PHYSICAL REVIEW E

VOLUME 51, NUMBER 5

MAY 1995

Global vector field reconstruction from a chaotic experimental signal
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A successful global vector field reconstruction from experimental data that exhibit a chaotic
behavior is obtained. Data arise from a copper electrodissolution. The reconstructed set of equations

is checked by using a topological characterization.

PACS number(s): 05.45.+b, 87.40.+w

I. INTRODUCTION

Over the past few years many papers have been de-
voted to global vector field reconstruction [1-16]. In par-
ticular, the extraction of a set of equations that models
the experimental data is a very important goal in the
study of nonlinear systems. Such a model may allow a
precise prediction of the evolution of the studied experi-
mental system. If a good equivalence between the origi-
nal attractor and the reconstructed attractor is achieved
(for helpful discussion about this problem, see [17]), infor-
mation on the evolution of the unobserved coupled vari-
ables required for the complete description of the system
may then be available. Many developments on global
reconstruction methods have been proposed essentially
from numerical models, such as the well-known systems
proposed by Lorenz [18] and Rossler [19].

In this paper, we present a successful reconstruction
of an equation set from experimental chaotic data us-
ing derivative coordinates. With similar method, recon-
structed models from experimental data have been ob-
tained in Ref. [15]. The chaotic data studied here are
obtained from the electrodissolution of copper [20]. Ear-
lier data from the same system have been analyzed both
by a discrete method as well as with a global vector field
reconstruction using a continuous-time modeling with ar-
tificial neural networks [21,13]. A topological validation
of the reconstructed model is given by extracting its tem-
plate, which is found to be the same as the template of
the experimental data. A similar use of a topological
validation is also available from Tufillaro et al. [16].

The paper is organized as follows. Section II is devoted
to a brief recall of the reconstruction method. Section ITI
presents the experimental conditions and the extraction
of the template from experimental data. In Sec. IV, the
reconstructed model is given and its template is built and
favorably compared to the original one. Section V gives
a conclusion.
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II. RECONSTRUCTION METHOD

For a more convenient presentation, we present the re-
construction method in the case where the required num-
ber of equations is equal to 3. The aim of such a method
is to reconstruct a vector field equivalent to the original
system from a scalar time series, here called z(t). A stan-
dard system can be written with the observable z(t) and
its derivatives according to

X=2=Y, Y=2 Z=F(X,Y,2), (1)

in which the reconstructed state space related to the
standard system is spanned by derivative coordinates
(X =2,Y =2,Z = ).

A global vector field reconstruction may then be
achieved if a good enough approximation F' of the so-
called standard function F' is designed. The approxima-
tion F' is obtained by using a Fourier expansion on a
basis of orthonormal multivariate polynomials generated
by the data set [14,7]. These polynomials depend on
the derivative coordinates (X,Y, Z), therefore involving
terms X*, Y7, Z*. As described in Ref. [14], we introduce
monomials P! which read

Pl = X'YiZk . (2)

The one-to-one relationship to be used between triplets
(%,7,k) and natural numbers [ is completely defined in
[14]. The approximation of the function F' may then be
written as

N;
F=) K P, (3)
=1

where NN is the dimension of the basis {P'}. All the
information concerning the chaotic attractor is therefore
encoded in the set of coefficients K;, which forms a sig-

4262 ©1995 The American Physical Society



51 GLOBAL VECTOR FIELD RECONSTRUCTION FROM A . .. 4263

nature of the attractor.
The time derivatives used in this algorithm are esti-
mated by a discrete linear filter
P
wi(t) = Y rip(n) x(t+nr), (4)

n=—p

where the time series x(t) discretized on the time step 7
is the input, w;(t), the so-called Legendre coordinate, is
the output, and r;,(n) is an appropriate discrete convo-
lution kernel, namely, the discrete Legendre polynomials,
parametrized by the choice of p and the order j of the re-
quired derivative. Following Gibson et al. [22], this filter
defines the optimal linear coordinate transformation.

It appears [14] that the reconstruction depends on NN,,
the number of vectors (z,%,%,7T) on which F is esti-
mated; N,, the number of vectors sampled per pseudo-
period; N;, the number of retained multivariate polyno-
mials; and 7, = (2p + 1)7, the window size on which the
derivatives are estimated by using the linear filter (4).
The vector (7, Ny, N,, N;, T,,) defines all the reconstruc-
tion parameters. In practical applications, the choice of
such parameters may have a significant effect on the qual-
ity of the results [14]. Optimal parameters may be more
easily obtained by using an error function E, given by
(in shorthand notation)

_1Zz - F(X,Y,Z)“l
12111

, (5)

r

where || ||; is a norm chosen to be the norm L; due to
its computational efficiency. The use of such an error
function is similar to the one introduced by Brown et al.
[15].

III. COPPER ELECTRODISSOLUTION

It is well established that chemical reactions may
provide chaotic behaviors, for instance, the Belousov-
Zhabotinskii reaction ([23-26]) and many electrodisso-
lutions [27,28]. We investigate here the case of a copper
electrodissolution.

A. Experiments

The time series was obtained from a dissolution current
measurement during the potentiostatic electrodissolution
of a rotating Cu electrode in phosphoric acid. The ex-
perimental setup consisted of a rotating disk electrode,
which had a copper rod, 8.26 mm in diameter, embedded
in a 2-cm-diam Teflon cylinder. The rotating speed was
maintained at 4400 rpm. In order to minimize noise, we
used a mercury contact instead of standard silver-carbon
brush contact (Pine Instrument ASR2 rotator). A cylin-
drical platinum net band (much larger than the disk) was
put around the disk as a counter electrode to get uniform
potential and current distributions.

The cell was a 500-ml flask with a side neck in which
the capillary probe was fixed. The reference electrode
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FIG. 1. Current times series I(t).

was a saturated calomel electrode (SCE), which was sep-
arated from the solution by the capillary. The distance
between the disk surface and the tip of the capillary was
about 6 mm. The cell contained 250 ml of 85.7 wt. %
phosphoric acid and a water bath was used to maintain
its temperature at 20 °C.

A Potentiostat (Princeton Applied Research model
273) was used to regulate the potential (at 689 mV) of
the working disk electrode with respect to the SCE and
to monitor the current. The data were recorded at a
frequency of fo = 1500 Hz using a 486-type personal
computer and a data acquisition board (Model DAS-18,
Keithley MetraByte’s). The current time series I(t) is
displayed in Fig. 1.

Once the initial transient signal has disappeared, the
behavior of the system eventually settles down on a
chaotic attractor in the state space. Such a space may be
reconstructed by using derivative coordinates (X,Y, Z)
as proposed in the pioneering paper by Packard et al.
[1]. Since we find a correlation dimension D, equal to
2.3 £ 0.2 by using the Grassberger-Proccacia algorithm
[29], the reconstructed standard space may be spanned
by using three coordinates as displayed in Fig. 2.

A first-return map to the Poincaré section P is defined
by

P={(X,Y)e R’ | X =43.7, Y > 0} (6)
and displayed in Fig. 3. Two monotonic branches are
distinguished: one increasing branch and one decreasing

branch, which allow us to define a symbolic dynamics to
encode periodic orbits.
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FIG. 2. XY-plane projection of the reconstructed state
space. Derivatives are estimated by using the discrete Legen-
dre filter with a window size 7, = 21f, 1
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FIG. 3. First-return map to the Poincaré section P.

B. Template

Topological characterization provides a useful tool to
decide about the equivalence between an original at-
tractor (here obtained by a reconstruction in the space
spanned by the derivative coordinates, displayed in Fig.
2) and a reconstructed attractor (here generated by in-
tegrating the reconstructed vector field, displayed in Fig.
7). The first step is then the construction of the template
from experimental data. For that purpose the usual pro-
cedure [30] is to propose an induced template and check
it by a comparison between linking numbers obtained
from orbit constructions on the template and plane pro-
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FIG. 4. Template of the original attractor. The orbit pair
(1,10) is constructed: L(1,10) = 1[+2] = +1.

jections of the corresponding orbits (extracted from the
experimental data): if the linking numbers are found to
be equal, the template is checked.

The attractor displayed in Fig. 2 is a very simply
folded band like the common Réssler attractor. From
the first-return map, we propose a template consisting of
two stripes: one stripe without any local torsion associ-
ated with branch 0 and one stripe with a positive 7 twist
(following the convention introduced by Melvin and Tu-
fillaro [31]) associated with branch 1. Such a process does

TABLE 1. Values of K.

! K[ l Kl

1 0.1219705394981005 27 —0.145539951745097

2 —1.078249529843902 x 102 28 0.1049018763188871

3 0.9125082050943352 29 12.14985173080021

4 —31.5804652088144 30 —38.5366235437547

5 2.882119184023051 x 10~* 31 0.3809613670493999

6 —0.107945627123624 32 2.19570526400687

7 3.14261019012943 33 21.55254081698994

8 —2.58142102535676 34 165.1484278847694

9 30.7789877436226 35 —1437.72802782965

10 180.3217927930279 36 7.928626337606531 x 10~ 1°
11 —5.550910841337609 x 10~ 37 5.752046655223851 x 10~ "

12 4.625376454207544 x 1073 38 —1.081602890433014 x 10~°
13 —0.114822275266309 39 4.628712833151052 x 10~°

14 0.2121650714651616 40 —3.976058731703460 x 10™*
15 —2.24124505814176 41 —2.626758361863347 x 1072
16 —13.6799701248913 42 1.437994615429103 x 10~3

17 3.60656873135868 43 1.753989520753347 x 10~

18 —6.67239615224999 44 —0.126567212485869

19 —287.70105676069 45 0.3435285584041194

20 1083.030601671941 46 —5.116362209078044 x 103
21 —7.711227398599053 x 1072 a7 —3.788259242947936 x 1072
22 —8.541800526483852 x 10~° 48 —0.572245746550728

23 1.833011097559745 x 10~ 49 —4.44596569136184

24 —5.532917786559483 x 1073 50 23.99099286766239

25 5.276461759803514 x 102 51 —8.936897340164367 x 1072
26 0.3345112248727262 52 —0.464973703176679
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FIG. 5. Projection of the orbit couple (1,10) on the XY
plane: L(1,10) = 1[+2] = +1.

not allow us to identify global torsions in the template,
which therefore will have to be validated.

The template is displayed in Fig. 4 together with a pair
of periodic orbits encoded by (1) and (10), respectively.
The linking number L(1,10), which is equal to the half
sum of oriented crossings [31,32], turns out to be equal
to +1.

In order to check this template, the XY -plane projec-
tions of a few orbit couples are required. Periodic or-
bits (1), (10), and (1011) are extracted by a close return
method from the time series I(¢) and are projected on
the XY planes (Figs. 5 and 6). The half sum of oriented
crossings of the pair (1,10) is found to be equal to +1 as
on the template. The second linking number L(10,1011)
is also counted on the XY plane and is found to be equal
to +3 (which may be easily checked on the template).
The template is therefore checked.

IV. RECONSTRUCTED MODEL
A. Model

A reconstructed model is obtained by applying the al-
gorithm previously described in Sec. II. Required suc-

FIG. 6. Projection of the orbit couple (10,1011) on the XY
plane: L(10,1011) = 1[+6] = +3.
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FIG. 7. Reconstructed attractor generated by integrating
the reconstructed model.
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FIG. 8. X plane projection of periodic orbits encoded by
(1) and (10), respectively. L(1,10) = [+2] = +1.

FIG. 9. XY plane projection of periodic orbits encoded by
(10) and (1011), respectively. L(10,1011) = 1[+6] = +3.
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cessive derivatives of the time series I(t) are estimated
by using the discrete Legendre filter with a window size
Tw = 21f7! =~ 0.015. The central little loop in Fig.
2 is not considered to be representative of the dynam-
ical behavior. Thus we choose a part of data without
any loop to perform our algorithm. After searching the
minimal value of the error function E,, it is found that
an optimal reconstruction vector is (7, Ng, Ny, Ni, 7)) =
(£71,295,14,52,21f°1), i.e., a successful reconstruction
is obtained with an approximate standard function F of
52 terms. K values are reported in Table 1.

The reconstructed standard system is then integrated
with an adaptative step integrator. The reconstructed
attractor is displayed in Fig. 7, comparing rather well
with Fig. 2.

B. Topological equivalence validation

In order to validate this model, a template is built from
the attractor generated by the integration of the model.
Periodic orbits are extracted and projected on the XY
plane (Figs. 8 and 9). Linking numbers L(1,10) and
L(10,1011) are equal to +1 and +3 as on the original
attractor, respectively. The model is therefore topologi-
cally compatible with the experimental data.
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V. CONCLUSION

We presented a global vector field reconstruction of an
experimental chaotic data set in the case of copper elec-
trodissolution. The obtained model is checked by topo-
logical characterization, which gives identical templates
for the attractor reconstructed with successive deriva-
tives and the attractor generated by integrating the re-
constructed model. Such a model may be used to predict
the evolution of the observable and also of unobserved
variables. A very accurate study of the population of
periodic orbits related to these attractors (original and
reconstructed ones) will be presented in a future paper.
With such results, it is believed that physicists now pos-
sess an opportunity to extract automatic models from
experimental time series and to exploit them.
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